eddb.pl

Dariusz W. Szczepanik1,2

1  Department of Theoretical Chemistry, Jagiellonian University
    Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
2  Institute of Computational Chemistry and Catalysis, University of Girona
    C/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain



  Covers

         

  List of publications  (Show abstracts)

  1. Excited state character of Cibalackrot-type compounds interpreted in terms of Hückel-aromaticity: a rational for singlet fission chromophore design
    W. Zeng, O. El Bakouri, D.W. Szczepanik (), H. Bronstein (), H. Ottosson ()
    Chemical Science  (2021) under review.   URL     CHEMRXIV  

  2. The electron density of delocalized bonds (EDDB) as a measure of local and global aromaticity.
    D.W. Szczepanik (), M. Solà ()
    Aromaticity: Modern Computational Methods and Applications (ed. I. Fernández), Chapter 8 (pp. 271−295), Elsevier, 2021.
    DOI: 10.1016/C2019-0-04193-3. ISBN: 978-0128227237.   URL    BUY 

  3. Aromaticity survival in hydrofullerenes: the case of C66H4 with its π-aromatic circuits ( Hot Article! )
    D. Chen, D.W. Szczepanik, J. Zhu, A. Muñoz-Castro (), M. Solà ()
    Chemistry - A European Journal  27 (2021) 802−808.   URL 

  4. All-metal Baird aromaticity. ( Hot Article! )
    D. Chen, D.W. Szczepanik, J. Zhu (), M. Solà ()
    Chemical Communications  56 (2020) 12522−12525. DOI: 10.1039/D0CC05586G.   URL     CHEMISTRY WORLD - News  

  5. Probing the origin of adaptive aromaticity in 16-valence-electron metallapentalenes.
    D. Chen, D.W. Szczepanik, J. Zhu (), M. Solà ()
    Chemistry - A European Journal  26 (2020) 12964−12971. DOI: 10.1002/chem.202001830.   URL 

  6. Resonance assisted hydrogen bonding phenomenon unveiled from both experiment and theory − An example of new family of ethyl N-salicylideneglycinate dyes
    D.S. Shapenova, A.N. Zvezda, A.A Shiryaev, M. Bolte, M. Kukulka, D.W. Szczepanik, J. Hooper, M.G. Babashkina, G. Mahmoudi, M.P. Mitoraj (), D.A. Safin ()
    Chemistry - A European Journal  26 (2020) 12987−12995. DOI: 10.1002/chem.202001551.   URL 

  7. Origin of hydrocarbons stability from computational perspective − A case study of xylene isomers.
    M.P. Mitoraj (), F. Sagan, D.W. Szczepanik, J. Lange, A. Ptaszek, D.M.E. Niekerk, I. Cukrowski ()
    ChemPhysChem  21 (2020) 494−502. DOI: 10.1002/cphc.202000066.   URL 

  8. Tuning the strength of the resonance-assisted hydrogen bond in acenes and phenacenes with two o-hydroxyaldehyde groups. The importance of topology.
    G. Pareras, D.W. Szczepanik, M. Duran, M. Solà (), S. Simon ()
    Journal of Organic Chemistry  84 (2019) 15538−15548. DOI: 10.1021/acs.joc.9b02526.   URL 

  9. Electron delocalization in planar metallacycles: Hückel or Möbius aromatic?
    D.W. Szczepanik (), M. Solà ()
    ChemistryOpen  8 (2019) 219−227. DOI: 10.1002/open.201900014.   URL 

  10. Structural versatility of the quasi-aromatic Möbius type zinc(II)-pseudohalide complexes − experimental and theoretical investigations.
    M.P. Mitoraj (), F. Afkhami, G. Mahmoudi (), A. Khandar, A. Gurbanov, F. Zubkov, R. Waterman, M. Babashkina, D.W. Szczepanik, H. Jena, D.A. Safin ()
    RSC Advances  9 (2019) 23764−23773. DOI: 10.1039/c9ra05276c.    URL 
    RSC Advances  9 (2019) 26547−26547. DOI: 10.1039/c9ra90062d.    URL   (Correction)

  11. The chameleon-like nature of anagostic interactions and its impact on metalloaromaticity in square-planar nickel complexes.
    M.P. Mitoraj (), M.G. Babashkina, K. Robeyns, F. Sagan, D.W. Szczepanik, Y. Garcia, D.A. Safin ()
    Organometallics  38 (2019) 1973−1981. DOI: 10.1021/acs.organomet.9b00062.   URL 

  12. Effect of solvent on the structural diversity of quasi-aromatic Möbius cadmium(II) complexes fabricated from the bulky N6 tetradentate helical ligand.
    M.P. Mitoraj (), G. Mahmoudi (), F. Afkhami, A. Castineiras, G. Giester, I. Konyaeva, A.A. Khandar, F. Qu (), A. Gupta (), F. Sagan, D.W. Szczepanik, D.A. Safin ()
    Crystal Growth Design  19 (2019), 1649−1659. DOI: 10.1021/acs.cgd.8b01569.   URL 

  13. A simple alternative for the pseudo-π method.
    D.W. Szczepanik ()
    International Journal of Quantum Chemistry  118 (2018) e25696. DOI: 10.1002/qua.25696.   URL 

  14. Aromaticity of acenes: the model of migrating π-circuits.
    D.W. Szczepanik (), M. Solà, T.M. Krygowski, H. Szatylowicz, M. Andrzejak, B. Pawelek, J. Dominikowska, M. Kukulka, K. Dyduch
    Physical Chemistry Chemical Physics  20 (2018) 13430−13436. DOI: 10.1039/c8cp01108g.   URL 

  15. Quasi-aromatic Möbius metal chelates.
    G. Mahmoudi (), F. Afkhami, A. Castineiras, I. Garcia-Santos, A. Gurbanov, F.I. Zubkov, M.P. Mitoraj (), M. Kukulka, F. Sagan, D.W. Szczepanik, D.A. Safin ()
    Inorganic Chemistry  57 (2018) 4395−4408. DOI: 10.1021/acs.inorgchem.8b00064.   URL 

  16. The electron density of delocalized bonds (EDDB) applied for quantifying aromaticity.
    D.W. Szczepanik (), M. Andrzejak, J. Dominikowska, B. Pawełek, T.M. Krygowski, H. Szatylowicz, M. Solà
    Physical Chemistry Chemical Physics  19 (2017) 28970−28981. DOI: 10.1039/c7cp06114e.   URL 

  17. The role of the long-range exchange corrections in the description of electron delocalization in aromatic species.
    D.W. Szczepanik (), M. Solà, M. Andrzejak, B. Pawełek, J. Dominikowska, M. Kukułka, K. Dyduch, T.M. Krygowski, H. Szatylowicz
    Journal of Computational Chemistry  38 (2017) 1640−1654. DOI: 10.1002/jcc.24805.   URL 

  18. From quantum superposition to orbital communication.
    D.W. Szczepanik (), E.J. Zak, J. Mrozek
    Computational and Theoretical Chemistry  1115 (2017) 80−87. DOI: 10.1016/j.comptc.2017.05.041.   URL 

  19. On the three-center orbital projection formalism within the electron density of delocalized bonds method.
    D.W. Szczepanik ()
    Computational and Theoretical Chemistry  1100 (2017), 13−17. DOI: 10.1016/j.comptc.2016.12.003.   URL 

  20. A new perspective on quantifying electron localization and delocalization in molecular systems.
    D.W. Szczepanik ()
    Computational and Theoretical Chemistry  1080 (2016) 33−37. DOI: 10.1016/j.comptc.2016.02.003.   URL 

  21. The lowest triplet states of bridged cis-2,2'-bithiophenes - theory vs experiment.
    M. Andrzejak (), D.W. Szczepanik, Ł. Orzeł
    Physical Chemistry Chemical Physics  17 (2015) 5328−5337. DOI: 10.1039/c4cp03327b.   URL 

  22. A uniform approach to the description of multicenter bonding.
    D.W. Szczepanik (), M. Andrzejak, K. Dyduch, E.J. Zak, M. Makowski, G. Mazur, J. Mrozek,
    Physical Chemistry Chemical Physics  16 (2014) 20514−20523. DOI: 10.1039/c4cp02932a.   URL 

  23. Electron delocalization index based on bond order orbitals.
    D.W. Szczepanik (), E.J. Zak, K. Dyduch, J. Mrozek
    Chemical Physics Letters  593 (2014) 154−159. DOI: 10.1016/j.cplett.2014.01.006.   URL 

  24. Probabilistic models of the chemical bond in the function spaces.
    D.W. Szczepanik (supervisor: J. Mrozek)
    PhD Thesis, Jagiellonian University (2013). DOI: 10.13140/RG.2.2.19414.55368.   PDF 

  25. Through-space and through-bridge interactions in the correlation analysis of chemical bonds.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  1026 (2013) 72−77. DOI: 10.1016/j.comptc.2013.10.015.   URL 

  26. Nucleophilicity index based on atomic natural orbitals.
    D.W. Szczepanik (), J. Mrozek
    Journal of Chemistry  2013 (2013) 684134 (1−6). DOI: 10.1155/2013/684134.   URL 

  27. Minimal set of molecule-adapted atomic orbitals from maximum overlap criterion.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  51 (2013) 2687−2698. DOI: 10.1007/s10910-013-0230-z.   URL 

  28. Ground-state projected covalency index of the chemical bond.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  1023 (2013) 83−87. DOI: 10.1016/j.comptc.2013.09.008.   URL 

  29. On quadratic bond-order decomposition within molecular orbital space.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  51 (2013) 1619−1633. DOI: 10.1007/s10910-013-0169-0.   URL 

  30. Stationarity of electron distribution in ground-state molecular systems.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  51 (2013) 1388−1396. DOI: 10.1007/s10910-013-0153-8.   URL 

  31. On several alternatives for Löwdin orthogonalization.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  1008 (2013) 15−19. DOI: 10.1016/j.comptc.2012.12.013.   URL 

  32. Electron population analysis using a reference minimal set of atomic orbitals.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  996 (2012) 103−109. DOI: 10.1016/j.comptc.2012.07.021.   URL 

  33. Symmetrical orthogonalization within linear space of molecular orbitals.
    D.W. Szczepanik (), J. Mrozek
    Chemical Physics Letters  521 (2012) 157−160. DOI: 10.1016/j.cplett.2011.11.047.   URL 

  34. Basis set dependence of molecular information channels and their entropic bond descriptors.
    R.F. Nalewajski (), D.W. Szczepanik, J. Mrozek
    Journal of Mathematical Chemistry  50 (2012) 1437−1457. DOI: 10.1007/s10910-012-9982-0.   URL 

  35. Probing the interplay between multiplicity and ionicity of the chemical bond.
    D.W. Szczepanik (), J. Mrozek
    Journal of Theoretical and Computational Chemistry  10 (2011) 471−482. DOI: 10.1142/s021963361100658x.   URL 

  36. Entropic bond descriptors from separated output-reduced communication channels in AO-resolution.
    D.W. Szczepanik, J. Mrozek ()
    Journal of Mathematical Chemistry  49 (2011) 562−575. DOI: 10.1007/s10910-010-9763-6.   URL 

  37. Bond differentiation and orbital decoupling in the orbital-communication theory of the chemical bond.
    R.F. Nalewajski (), D.W. Szczepanik, J. Mrozek
    Advances in Quantum Chemistry vol. 61 (ed. J.R. Sabin, E. Brandas), Chapter 1 (pp. 1−48), Elsevier, 2011.   URL 

  38. Entropic bond indices from information theory.
    D.W. Szczepanik (supervisor: J. Mrozek)
    MSc Thesis, Jagiellonian University (2008). DOI: 10.13140/RG.2.2.34514.04807.


 
 
 
 
 
 

Last update:   2021-01-13